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A convergent numerical model for the calculation of the optical properties of an ion 
beam is given. The ion beam is formed by extracting ions from a plasma and subsequently 
accelerating these ions with an electrode system. The model includes the effects of space- 
charge of the ions and an equilibrium distribution of electrons. Methods are given for 
determining the existence of the solution to the nonlinear difference equations, and a 
convergent iterative numerical procedure is described. Comparisons are made with a 
procedure that previously has been used to solve such a model. 

1. INTRODUCTION 

Neutral beam injection systems for heating and sustaining controlled thermonuclear 
reactor (CTR) plasmas require the production of hydrogen and deuterium ion 
beams of high current density and minimum beam divergence. These beams are 
prepared by extracting ions from a weakly ionized gas discharge and accelerating 
these ions with an electrode system [I, 21. The space-charge of the ion beam is 
neutralized immediately as it exits from the accelerator by charge exchange in a 
neutralizer filled with gas. We consider a single beamlet in such an ion source. Figure 1 
shows a cross section of the region where we model the electric fields. We discuss a 
correct method for solving the model equations in the extraction region of such an 
ion source. 

In Section 2 we discuss the mathematical model for the beamlet in the electrode 
region of the ion source. Section 3 details a mathematical proof of the existence and 
uniqueness of the numerical solution to the model. In Section 4 we compare the 
results of the present method of solution to a previously used method. 
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FIG. 1 A solution obtained by method II. 

2. THE MODEL 

The model requires the simultaneous solution of two time-independent partial 
differential equations. Poisson’s equation must be solved for the electrostatic potential 
(b(r) in the region of interest and Vlasov’s equation must be solved for the ion distribu- 
tionfi(v), or alternatively the ion density ni = Jfi(~) dv, in the same region. A Boltz- 
mann distribution of electron densities is assumed to exist throughout the region. 
Specifically, we consider the solution of 

V24 = -(e/zo){ni - neo exp[--e(4, - 9WTe13, (1) 

where $ is the electric potential, co is the permittivity of free space, e is the electron 
charge, k is Boltzmann’s constant, $. is the value of the potential at the center of the 
plasma, ni is the ion density, and neo is the electron density at the center of the plasma. 
The Vlasov equation is solved indirectly by computing ion trajectories in the potential 
I$. Specifically, ni is computed by the following procedure. 

A nonrelativistic Hamiltonian.for a particle with mass mi , charge eZ, and momen- 
tum P8/2mi + eZ& Hamilton’s equations of motion of the particle are then given by 
aHlag,. = -dp,ldt and aH/ap, = dqi/dt, where Pi represents the generalized momen- 
tum and qi its corresponding generalized coordinate. We numerically integrate 
Hamilton’s equations using an ordinary differential equation integrator with given 
initial conditions. This procedure gives a path that ions starting from a given point 
with a given initial momenta would follow. Once paths have been calculated for a set 
of initial conditions, we calculate the effective charge in a cell of the mesh where 
Eq. (1) has been differenced. The charge is then deposited on the cell verticles. 
Letting I represent the fraction of the total current in the beamlet carried by a single 
path, the effective charge in a given cell through which the trajectory passes can be 
written as q = SC I dl/( Y /, where the integration is along the particles path through 
the cell. In other words, Q = Id t, where d t is the time spent in each cell by the particle. 

The initial conditions for the equations of motion are chosen by assuming the ion 
distribution in the source plasma to be a drifting Maxwellian with a drift velocity 
toward the accelerating electrode region. An average initial velocity is computed for 
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each of the paths to be calculated using this distribution. The starting position is 
chosen arbitrarily by assigning an initial coordinate in the source plasma. In practice 
we have found that the results of the code are not sensitive to the initial conditions of 
the trajectories nor the exact procedure of depositing the charge on the cell vertices. 
Our procedure for analyzing an electrode system is as follows. First, Eq. (1) is solved 
with rzi = 0. A space-charge ni is then obtained by tracing ion trajectories and Eq. (1) 
is solved with this new ni . The process is continued until no significant change in the 
trajectories is occurring. This process has been used before by other investigators 
[l-3]. The numerical solution of Eq. (1) with a given ni and specified boundary 
conditions has proved to be a troublesome task. In Section 3, we show that the 
approximate solution to this nonlinear equation exists for any ni , is unique, and can be 
obtained from any starting value of 4. While this settles the convergence question 
for Eq. (1) with fixed ni, the question of convergence of the process of updating ni 
cannot be answered at this point. All of our numerical experiments indicate that this 
process does converge. 

We choose to write the coordinate lengths in dimensionless variables by letting 

(2) 

(3) 

(4) 

where X, is the electron Debye length at the center of the source plasma. We rewrite 
Eq. (1) as 

V2U = Pi - e-u, (5) 
where 

Pi = nil%0 . 

The boundary condition n,, = ni at the plasma source boundary is used to ensure 
space-charge neutrality. The potential u or au/ax is specified on all boundaries. 

Equation (5) may be approximated by a set of suitable finite-difference equations. 
For simplicity, we assume that we have a two-dimensional grid system. Using standard 
central difference approximations for the partial derivatives, one has an equation for 
each mesh point of the form 

ql = Cl% + c2u2 + w3 + c4u4 + c5 7 (7) 

where u, is the value of the potential at the mesh point under consideration. u1 , a2 , ug 
and up are the values of the potential at the neighbors of u, ; c1 , c2 , cg , and cq are 
strictly geometry-dependent; and c5 depends on the right side of Eq. (5) and the 
geometry of the problem. The system of equations arising from Eq. (7) can be written 
in the form (see Ref. [4]) 

Au = b, (8) 
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where A is an n x n matrix, u is a column matrix with the values of u at each mesh 
point as elements, and b is an n x 1 matrix whose elements are formed by c5 . Two 
methods of solving the system of equations are compared. In Method I, described 
in detail elsewhere [5], an attempt is made to solve the system of equations with the 
assumption that c5 is a constant. Then the system of linear equations is solved, a new 
c5 is calculated, and the equations are solved again. In practice, c5 depends on under- 
relaxation parameters that control the amount of change in c, from one update to 
another. One can think of Method I as follows. We solve or partially solve Eq. (8) 
for U; then using this value of u we calculate a new b and repeat the process until the 
full nonlinear system is satisfied by the last value of U. The solution is obtained in 
practice by using Eq. (7) as the basis for a relaxation scheme. 

In Method II, which is the subject of this paper, we solve the set of equations in 
Eq. (7) in their full nonlinear form. That is, we solve for u,, in the equation 

u, - Ge-“O = Cl% + c2u2 + C3% + c4u4 + c;, (9) 

where c; is now composed of pi and G is a geometrical factor. We note that CL is now 
a constant and does not depend on u in our scheme. Because it is derived from the ion 
space-charge, it is calculated from the previous U. Thus the relaxation scheme is now 
based on Eq. (9). 

This system of equations can be written as 

Au + Q(u) = 0, (10) 

where again A is an n x n matrix, u is a column matrix, and Q(U) is a column matrix 
whose elements are formed from the nonlinear term and c5’. We show in the next 
section the conditions under which the system of Eq. (10) has a unique solution and 
how to obtain that solution. 

3. METHOD OF SOLUTION 

In this section we show how one can solve a set of n nonlinear equations in n 
unknowns. The restrictions on the nonlinearity will become obvious as we proceed. 
The system of equations is given by 

Au + @i(u) = 0, (10 

where A is an n x n symmetric matrix and Q(u) is an (n x 1) column matrix of 
nonlinear elements. We define a function F as 

@I 2 ~2 ,..., U,) = 9 g $J uiaijuj + 2 yi(Ui), 
i=l 3-l i-l 

w 
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where aij is a typical element of A and 

Y&J = j-” di(t) dt. 
m 

(13) 

The term &(t) is a typical element of the nonlinear column vector Q(u), and 01 is 
arbitrary. 

First, we note that a solution to the system of equations given by Eq. (11) can be 
obtained by finding the critical values of F: 

One can establish the nature of the critical points of F by calculating the Hessian 
matrix defined by 

H,, = a~qau,a~,. (15) 

If the Hessian is positive definite in a given region, the function F has a local minimum 
in that region [6]. If H is uniformly positive definite, then F has only one minimum 
and is uniformly convex [6]. For the function defined by Eq. (12) 

fL, = anm + Mun) a,, , (16) 

where &(u,J is the first derivative of cj, and 6, is the Kronecker delta. Thus, the 
question of whether we have a unique solution to Eq. (11) can be answered by exami- 
nation of the Hessian matrix given by Eq. (16). 

Assuming that one has established that H is uniformly positive definite, and this 
will be the case if A is positive definite and &(u,,) > 0, then a unique solution to 
Eq. (11) exists. A prescription for finding that solution is now given. Let ulk represent 
an approximation for u1 and u:+’ represent a successive approximation to u. We need 
to establish that 

F(u, , u, ,..., u: ,. .., u,) - F(u, , uz ,.. ., u;” ,..., u,J > 0, (17) 

or we need a prescription for successively estimating u$ such that we always move 
toward the minimum of F. Let 

and 

g =fi(ul”, z&k ,...) 221” ,...) u,k) = 0, (18) 

221” = g,(uk ,..., t&.1 , uf+r ,..., ul’), and (19) 

k+l _ 
4 - Ulk + W(lilk - Ulk), (20) 

where w is presently an unknown constant parameter and (1Zrk - zQ) will be called 
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the residual denoted by rz . The u:” approximation to ur is obtained by solving 
Eq. (18), represented by Eq. (19), and then using Eq. (20). We have 

F(?.ll ,..., ug* ,..., 24,) - F(Ul )..., #I”” ,...) UJ 

Because 

f&l ,***, u9J = 5 aZiuj + #dud = Rz4 + ? W+ + $z<%>, (22) 
j=l j#l 

we can substitute Eq. (22) into Eq. (21), using Eq. (19), and integrate. We obtain 

F(u, )...) Ulk )..., UJ - F(z4, )...) 24;+, ,..., un) 

= 9 (w)(2 - co) rt + wr&(zQ + r,) - ]Y’tYI’ &(t) dt. 
u: 

(23) 

The question of convergence of the scheme defined by Eqs. (19) and (20) now becomes 
one of examination of the right side of Eq. (23). If the right side of Eq. (23) is positive, 
the scheme converges. If a,, is positive, the first term is positive for any 0 < w < 2. 
We need only to consider 

(24) 

One can write Eq. (24) as 

I 

tb:+LW, 
E= 

u: 
k&W + 4 - MO1 dt. (25) 

If w < 1 and &(t) 3 0, then for any finite value of rz one can see from Eq. (25) 
that E > 0. Thus, one has global convergence of the scheme for w < 1. The above 
argument can be presented in formal mathematical language; the interested reader 
should see Ref. [6]. We note that there are differences between the above argument and 
the proof found in Ref. [a]. For instance, the matrix A above, although symmetric, 
does not have to be an A4 matrix, and one can have global convergence with an w > 1 
for some problems. For a definition of the M matrix and its importance in matrix 
analysis, the reader is referred to Ref. [3]. By using Eq. (24), examination of a specific 
case can be made. We have investigated the case c+%(u) = Us and find that w can be 
greater than 1. For the partial differential equation -V2u - e-u + pi = 0, we have 
the matrix A formed by standard approximations for -Vzu and $i(~) = --e-u + pi . 
In Ref. [4] it is shown that A is real and symmetric, with positive diagonal entries and 
nonpositive off-diagonal entries, and A is positive definite. In our iteration scheme, 
pi is a constant term, being derived from the previous U; thus #Q’(U) > 0 for all u. 
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The above results assure us that a solution to the nonlinear difference equations for 
our problems exists and is unique for any pi . Moreover, we have an efficient iterative 
scheme to find that solution. 

In the actual computer code, we use Newton’s method to solve each nonlinear 
Eq. (18) as indicated by Eq. (19). We start the process with w = 1 for a few iterations 
until rI becomes sufficiently small and then increase w to approximately 1.7. This 
process is consistent with the above results and in practice has been found to speed 
the convergence of the scheme. In Section 4 we show some typical comparisons of 
computational work versus residual size. 

4. RESULTS OF THE Two METHODS 

In Fig. 2, we have plotted computational work against the absolute residual for the 
two methods. The abscissa for Method I is the total number of point successive 
overrelaxation (SOR) passes; for Method II the abscissa is the number of SOR passes 
plus the number of Newton iterations divided by the number of mesh points. The 
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FIGURE 2 

ordinate in each case is the maximum absolute residual. The curve for Method I was 
calculated in IBM 360 single precision (32-bit work length). Curves for Method II 
were calculated in both single- and double-precision arithmetic. The number [n x n] 
labeling each curve is the mesh size for that part of the curve. One can readily see 
that Method I does not do a very good job with this problem. While Method II is 
successful, double-precision arithmetic is necessary on the IBM machines to establish 
without doubt the rapid convergence of the Newton-SOR scheme. It seems note- 
worthy to mention that we first executed this code on a CDC 7600 computer. The 
code was fast and stable in single precision on that machine, because of its long word 
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length and an exponential function that is calculated with a fast table look-up. The 
speed of the exponential evaluation is critical in this scheme because one must solve 
each nonlinear equation at every mesh point by use of Newton’s method. It was 
necessary to write a table look-up and use double-precision arithmetic for the SOR 
iteration in order to duplicate the CDC results on an IBM machine.l 
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